Hopf-Galois module structure of tame radical extensions of prime degree

Paul Truman

Keele University, UK

AMS Spring Southeastern Sectional Meeting
Auburn, Alabama
Saturday 16th March, 2019

Overview

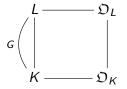
This talk is about the application of Hopf algebras to questions of integral Galois module structure in finite extensions of number fields.

- Integral Galois module structure
- Tame Kummer extensions of prime degree
- Hopf-Galois structures on field extensions
- Tame radical extensions of prime degree

Integral Galois module structure

Let L/K be a finite Galois extension of number fields with group G.

Write $\mathfrak{O}_L, \mathfrak{O}_K$ for the rings of algebraic integers of L, K.



L is a free K[G]-module of rank one.

Study \mathfrak{O}_L as a module over its associated order in K[G]

$$\mathfrak{A}_{K[G]} = \{ z \in K[G] \mid z \cdot \mathfrak{O}_L \subseteq \mathfrak{O}_L \}.$$

We have $\mathfrak{O}_K[G] \subseteq \mathfrak{A}_{K[G]}$, with equality if and only if $\mathrm{Tr}_{L/K}(\mathfrak{O}_L) = \mathfrak{O}_K$. (That is: if and only if L/K is tame.)

Integral Galois module structure

Theorem (Noether, 1932)

If L/K is tame then \mathfrak{O}_L is a locally free $\mathfrak{O}_K[G]$ -module (of rank one).

That is: $\mathfrak{O}_{K,\mathfrak{p}}\otimes\mathfrak{O}_L$ is a free $\mathfrak{O}_{K,\mathfrak{p}}[G]$ -module for each prime ideal \mathfrak{p} of \mathfrak{O}_K .

Theorem (Hilbert-Speiser, 1897, 1916)

If L/\mathbb{Q} is tame and abelian then \mathfrak{O}_L is a free $\mathbb{Z}[G]$ -module.

Integral Galois module structure

Theorem (Noether, 1932)

If L/K is tame then \mathfrak{O}_L is a locally free $\mathfrak{O}_K[G]$ -module (of rank one).

That is: $\mathfrak{O}_{K,\mathfrak{p}}\otimes\mathfrak{O}_L$ is a free $\mathfrak{O}_{K,\mathfrak{p}}[G]$ -module for each prime ideal \mathfrak{p} of \mathfrak{O}_K .

Theorem (Hilbert-Speiser, 1897, 1916)

If L/\mathbb{Q} is tame and abelian then \mathfrak{O}_L is a free $\mathbb{Z}[G]$ -module.

For base fields different from $\mathbb Q$ the problem is more delicate.

Theorem (Greither et al, 1999)

If $K \neq \mathbb{Q}$ then there exists a prime number p and a tame Galois extension L/K of degree p such that \mathfrak{O}_L is not a free $\mathfrak{O}_K[G]$ -module.

Tame Kummer extensions of degree p

Theorem (Gómez Ayala, 1994)

Let K be a number field and p be a prime number. Suppose that $\zeta_p \in K$ and that L/K is a tame Galois extension of prime degree p with group G. Then \mathfrak{O}_L is a free $\mathfrak{O}_K[G]$ -module if and only if there exists an element $\beta \in \mathfrak{O}_L$ such that

- $b = \beta^p \in \mathfrak{O}_K,$
- $oldsymbol{\mathfrak{g}}$ the ideals \mathfrak{b}_j defined by $\mathfrak{b}_j = \prod_{\mathfrak{p}} \mathfrak{p}^{\lfloor v_{\mathfrak{p}}(b^j)/p \rfloor}$ for $j=0,1,\ldots,p-1$ are

principal, with generators b_j such that $\sum_{j=0}^{p-1} \frac{\beta^j}{b_j} \equiv 0 \pmod{p\mathfrak{O}_L}$.

A new proof of Gómez Ayala's result

Theorem (Bley and Johnston, 2007)

Let L/K be a finite Galois extension of number fields with group G, and let \mathfrak{M} be a maximal order in K[G] that contains $\mathfrak{A}_{K[G]}$. Then \mathfrak{O}_L is a free $\mathfrak{A}_{K[G]}$ -module if and only if

- \mathfrak{O}_L is a locally free $\mathfrak{A}_{K[G]}$ -module;
- \mathfrak{MO}_L is a free \mathfrak{M} -module, with a generator $x \in \mathfrak{O}_L$.

A new proof of Gómez Ayala's result

Theorem (Bley and Johnston, 2007)

Let L/K be a finite Galois extension of number fields with group G, and let \mathfrak{M} be a maximal order in K[G] that contains $\mathfrak{A}_{K[G]}$. Then \mathfrak{O}_L is a free $\mathfrak{A}_{K[G]}$ -module if and only if

- \mathfrak{D}_L is a locally free $\mathfrak{A}_{K[G]}$ -module;
- \mathfrak{MO}_L is a free \mathfrak{M} -module, with a generator $x \in \mathfrak{O}_L$.

Now suppose L/K is a tame Kummer extension of prime degree p.

- \mathfrak{O}_L is a locally free $\mathfrak{O}_K[G]$ -module by Noether's theorem.
- We have $K[G] \cong K^p$ via orthogonal idempotents.
- K[G] contains a unique maximal order $\mathfrak{M} \cong \mathfrak{O}_K^p$.
- \mathfrak{MO}_L is a free \mathfrak{M} -module if and only if the ideals \mathfrak{b}_j are principal.
- \mathfrak{MO}_L has a generator in \mathfrak{O}_L if and only if the congruence in point (3) of the theorem is satisfied.

Let L/K be a finite Galois extension of fields with group G.

The action of K[G] on L is an example of a *Hopf-Galois structure* on the extension; there may be others.

If H is a Hopf algebra giving a Hopf-Galois structure on L/K then define

$$\mathfrak{A}_H = \{ h \in H \mid h \cdot \mathfrak{O}_L \subseteq \mathfrak{O}_L \},\,$$

and study the structure of \mathfrak{O}_L as a module over the various \mathfrak{A}_H .

Let L/K be a finite Galois extension of fields with group G.

The action of K[G] on L is an example of a *Hopf-Galois structure* on the extension; there may be others.

If H is a Hopf algebra giving a Hopf-Galois structure on L/K then define

$$\mathfrak{A}_H = \{ h \in H \mid h \cdot \mathfrak{O}_L \subseteq \mathfrak{O}_L \},\,$$

and study the structure of \mathfrak{O}_L as a module over the various \mathfrak{A}_H .

Proposition (Childs, 1989/Kohl, 1998/Byott, 1996)

If L/K is a Galois extension of prime degree p then the Hopf-Galois structure given by K[G] is the only Hopf-Galois structure on L/K.

Non-normal extensions of number fields may also admit Hopf-Galois structures. These allow us to study rings of integers in these extensions.

Idea

Let K be a number field, suppose that $\zeta_p \notin K$, and let L/K be a radical extension of degree p (that is: $L = K(\alpha)$ with $\alpha^p \in K - K^p$).

Can we use Hopf-Galois structures to study \mathfrak{O}_{I} ?

Non-normal extensions of number fields may also admit Hopf-Galois structures. These allow us to study rings of integers in these extensions.

Idea

Let K be a number field, suppose that $\zeta_p \notin K$, and let L/K be a radical extension of degree p (that is: $L = K(\alpha)$ with $\alpha^p \in K - K^p$).

Can we use Hopf-Galois structures to study \mathfrak{O}_L ?

Proposition (Childs, 1989/Kohl, 1998/Byott, 1996)

The extension L/K admits a unique Hopf-Galois structure.

Main Result

Theorem

Let K be a number field and p be a prime number. Suppose that p is unramified in K and that L/K is a tame radical extension of degree p. Let H give the unique Hopf-Galois structure on L/K. Then

- \mathfrak{O}_L is a locally free \mathfrak{A}_H -module;
- \mathfrak{O}_L is a free \mathfrak{A}_H -module if and only if there exists $\beta \in \mathfrak{O}_L$ such that

 - **2** $b = \beta^p \in \mathfrak{O}_K,$
 - $lackbox{0}$ the ideals \mathfrak{b}_j defined by $\mathfrak{b}_j=\prod_{\mathfrak{p}}\mathfrak{p}^{\lfloor v_{\mathfrak{p}}(b^j)/p\rfloor}$ for $j=0,1,\ldots,p-1$ are

principal, with generators b_j such that $\sum_{j=0}^{p-1} \frac{\beta^j}{b_j} \equiv 0 \pmod{p\mathfrak{O}_L}$.

Sketch of the proof

- We have $H \cong K^p$ via orthogonal idempotents.
- ullet H contains a unique maximal order $\mathfrak{M}\cong \mathfrak{O}_K^p$.
- Bley and Johnston: \mathfrak{O}_L is a free \mathfrak{A}_H -module if and only if it is a locally free \mathfrak{A}_H -module and $\mathfrak{M}\mathfrak{O}_L$ is free on an element of \mathfrak{O}_L .
- \mathfrak{O}_L is a locally free \mathfrak{A}_H -module:
 - If $\mathfrak{p} \nmid p\mathfrak{O}_K$ then $\mathfrak{A}_{H,\mathfrak{p}} = \mathfrak{M}_{\mathfrak{p}}$, so $\mathfrak{O}_{L,\mathfrak{p}}$ is a free $\mathfrak{A}_{H,\mathfrak{p}}$ -module.
 - If $\mathfrak{p} \mid p\mathfrak{O}_K$ then compute explicit $\mathfrak{O}_{K,\mathfrak{p}}$ bases of $\mathfrak{O}_{L,\mathfrak{p}}$ and $\mathfrak{A}_{H,\mathfrak{p}}$, and show that $\mathfrak{O}_{L,\mathfrak{p}}$ is a free $\mathfrak{A}_{H,\mathfrak{p}}$ -module.
- ullet \mathfrak{MO}_L is a free \mathfrak{M} -module if and only if the ideals \mathfrak{b}_j are principal.
- \mathfrak{MO}_L has a generator in \mathfrak{O}_L if and only if the congruence in point (3) of the theorem is satisfied.

Where next?

- Tame extensions of degree p^2 :
 - Radical: $L = K(\alpha)$ with $\alpha^{p^2} \in K K^{p^2}$. Harder to characterize tame versions of these.
 - Biradical: L = K(α, β) with α^p, β^p ∈ K − K^p.
 Hopf-Galois structures not known in this case.
- Wild extensions of degree p:
 - There is a unique Hopf-Galois structure.
 - If $\mathfrak{p} \nmid p\mathfrak{O}_K$ then $\mathfrak{O}_{L,\mathfrak{p}}$ is a free $\mathfrak{A}_{H,\mathfrak{p}}$ -module.
 - What about for p | pD_K?
 Elder has analysed the Hopf-Galois module structure of wild non-normal extensions of local fields of degree p. Perhaps his results could be used to complete the local picture.
 - Then use result of Bley and Johnston to get global results.

Thank you for your attention.